
Teaching Computational Thinking
with Processing

There is a developing trend in architecture towards computational design practices. Research shows that

the most di�cult part of learning to use these unfamiliar tools and methods is not the interfaces

involved, but rather the mindset—understanding how to design processes and systems1.

Computational thinking2 is the idea that other �elds can learn this mindset by drawing upon principles

and concepts from computer science.

In the fall of 2009, the University of Michigan at Ann Arbor introduced an experimental digital media

course, ARCH 506, with the objective of teaching students computational thinking.

Using the Processing programming language, students learned computer science principles and methods

which could serve as a foundation for a critical engagement with advanced architectural topics such as

parametric systems, simulation, generative scripting, physical computing, and others

Nicholas Senske
Assistant Professor, Univeristy of North Carolina, Charlotte
PhD. Candidate, University of Michigan, Ann Arbor

Why is it important for
architects to be able to
think like computer
scientists?

Summary

The goal of ARCH 506 is not to learn programming, but rather to learn how to think like a programmer.

However, teaching higher-level thinking skills is a challenge. Students tend to encode material in a rote

way, copying examples in their design work without much thought as to how or why they function. To

inhibit this, students were led through a series of programming “sketches”: rigorous, small-scale

exercises.

The objective of these sketches was not design, but rather to explore and abstract computational prin-

ciples. By engaging with the same principles across multiple contexts, students were more mindful of

the processes involved and less likely to merely reproduce patterns from the demonstration material.

Method

Processing is a programming language, developed at the MIT Media Lab, which is intended for artists and

designers. While it is used by many professionals, it was initially designed as a pedagogical tool,

combining visual and computational concepts in a simple, yet powerful programming syntax. The idea of

prototyping and/or thinking through code as part of one’s design process is built into the idioms of the

software. Processing �les are literally called “sketches”.

Unlike scripting, Processing requires no prerequisite knowledge and interoperates with a variety of

di�erent media. It is a full programming language and so it is a useful platform for learning computer

science principles in a way which should easily transfer to other programming languages and

computational tools.

hungrythings, Peter Yi

Clockwise, from top-left: Diana Tomova, Vaughn Calandra, Drew Gingrich

1. Sheil, B. A. (1983). "Coping With Complexity." Information Technology & People 1(4): 295 - 320.

2. http://www.cs.cmu.edu/~CompThink/papers/Wing06.pdf

The drawing machines unit introduces students to the fundamentals of algorithmic think-
ing. This includes knowledge of concepts such as variables, iteration, and program �ow
but also strategies for planning, problem decomposition, debugging, and reuse. These
ideas are not only essential to writing e�ective and thoughtful programs, they apply to
design in general, as well.

The simulations unit teaches students the basic concepts of modeling and representing
systems: data structures, object reference and inheritance, and separation of data and
presentation (among others). Students learn not only how to create complex behavior
from simple rules, but also how computer scientists observe, classify, and apply such be-
haviors to study and solve problems.

Sperm Wars, Jamie Cobb

What is Processing?

There is evidence that the course succeeded in its objective. In later semesters, many students reported

that ARCH 506 helped them appreciate and utilize their conventional software better. Others mentioned

that it made it easier for them to advance in computation courses such as scripting or physical

computing. Still others used what they learned to generate more sophisticated ideas within their studio

projects.

This suggests that introducing computational thinking early in the curriculum, as a foundation course

similar to ARCH 506, can be bene�cial. Tools and techniques may change, but the fundamentals of com-

puter science – which directly relate to design and computing – remain constant.

Results

